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Abstract. We study the one-dimensional random walk of a particle in the presence of a
short-range correlated quenched random field of jump lengthsl(x) drawn from a Ĺevy type
distributionp(l) ∼ l−1−f with 0< f < 2. We find the stochastic dynamics to be characterized
by a novel length–time scaling relation that is caused by an effective jump-length distribution
peff(l) ∼ l−1−g in the stationary state, which decays more rapidly thanp(l), i.e. g > f . For
f & 1.3, g becomes larger than 2 and the particle diffuses normally althoughp(l) has no finite
second moment. A scaling theory is developed that describes the dynamical crossover from the
annealed to the quenched situation.

Lévy flights [1] constitute a non-Brownian random motion, which can be most easily
visualized by considering a particle that at regularly spaced time intervals performs jumps
in random directions with jump lengthsl drawn from a distribution exhibiting a slowly
decaying algebraic tail,p(l) ∼ l−1−f where 0< f < 2. Since the second moment of
such a distribution is infinite, there exists no diffusive lengthscale in the process and a
time-dependent mean-square displacement is not well defined†. Nevertheless, a length–
time scaling relation can also be introduced in the Lévy flight problem by considering, for
example, the mean timetp(L) the particle needs to first pass a given distanceL. If the
jump lengths are uncorrelated in time (annealed disorder) one findstp(L) ∼ Lf [3] and this
scaling also manifests itself when considering other quantities characterizing the annealed
Lévy flight process, for examplex/t1/f is the scaling variable entering the Lévy stable laws
describing the probability of finding the particle near a positionx at time t [4].

Stochastic processes of Lévy type have found many applications [1], not only in physics
(e.g. in fluid flows [5], miscelle dynamics [6], or self-organized criticality [7]) but also in
biology [8, 9] or finance [10, 11]. Further insight regarding applications to real systems have
been gained by considering (annealed) Lévy flights with a truncated jump-length distribution
[12] and Ĺevy flights in the presence of an additional quenched random force field [13].
Recently, the first calculations going beyond one-particle properties have been performed
by studying the territory covered by many Levy flights [14].

In this paper we will investigate the question whether the fundamental length–time
scaling valid in the annealed case also holds true when the random jump lengths are not
drawn freshly at each timestep but are fixed in space (quenched disorder). As a starting
point we will consider here a one-dimensional situation, i.e. the random flight of a particle

† This drawback can be resolved by assuming that larger jumps need longer times as it was done in the theory of
Lévy walks, see [2].
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on a line with coordinatex in the presence of a random field of jump lengthsl(x). The
particle jumps with equal probability to the left or right at discrete timesteps1t = 1 with
a jump lengthl(xt ) given by its current positionxt at time t . Accordingly, the random
motion of the particle can be described by

xt+1 = xt + l(xt )ηt (1)

whereηt = ±1 is a random number specifying the jump direction (in the annealed case one
would havext+1 = xt + ltηt instead, wherelt is independent ofxt ). Because the particle
will almost never visitexactly the same point in space again, we require that the random
field l(x) is correlated over some distancea for the stochastic dynamics to be different from
the annealed case. To this end we assign a random jump lengthln to each space interval
na 6 x < (n + 1)a, n = 0,±1,±2, . . . , whereln can assume values between a shortest
jump lengthlmin and infinity, lmin 6 ln <∞. Each interval can be considered as a ‘site’ on
a linear chain with lattice constanta. For simplicity we focus on the situation wherelmin is
of the order ofa and accordingly setlmin = a = 1. The jump lengths are then drawn from
a distribution given explicitely by

p(l) = f l−1−f 16 l <∞. (2)

To explore the length–time scaling in the quenched case we perform computer
simulations of the stochastic dynamics given by equation (1). First we study the mean
first passage timetp(L) averaged over both several random trajectories for a given random
field l(x) and many different realizations ofl(x). In each trial the first passage time was
obtained by putting the particle at the originx = 0 at time t = 0 and by measuring the
elapsed time, when it first passed one of the positions atx = ±L. Figure 1(a) shows

Figure 1. (a) Mean first passage timetp(L) as a function ofL and (b) effective jump-length
distributionpeff(l) as a function ofl for f = 0.4 (×), 0.8 (♦), 1.0 (�), 1.2 (◦), 1.5 (�), and
2.0 (�). The full lines mark the asymptotic slopesα and−1− g in the double-logarithmic
plots: α ∼= 0.40 (g ∼= 0.40), 0.85 (0.86), 1.41 (1.41), 1.84 (1.86), 2.0 (2.30), and 2.0 (2.92) for
f = 0.4, 0.8, 1.0, 1.2, 1.5, and 2.0, respectively. Averages were performed typically over 104

different configurations.
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tp(L) as a function ofL for various exponentsf = 0.4, 0.8, 1, 1.5 and 2 (in a double-
logarithmic representation). The straight lines in the double-logarithmic plot indicate a
power-law behaviour for largeL,

tp(L) ∼ Lα (3)

where the exponentα ∼= f for f = 0.4 is in accordance with the result valid for the
annealed case. Forf = 0.8, 1 and 1.5, however,α is larger thanf , which means that
the superdiffusion is slowed down in comparison with the annealed case. Surprisingly, we
obtainα ∼= 2 for f = 1.5, i.e. the particle diffuses normally although the prescribed jump-
length distribution has no finite second moment. As a consequence, the curve forf = 1.5
in figure 1(a) becomes, for largeL, parallel to that forf = 2.0, where one would expect a
normal diffusive behaviour (except for a possible logarithmic correction term).

The origin of the differences betweenα and f can be understood by considering the
effectivejump-length distributionpeff(l) the particle encounters during its jump motion. This
distribution was simply measured by counting the total number of jump lengths falling into
a small interval during a time period that the particle needed to pass the largest distanceL

shown in figure 1(a). The result is shown in figure 1(b) for the same values of the exponent
f as in figure 1(a). As can be seen from the figure,peff(l) scales differently asp(l),

peff(l) ∼ l−1−g (4)

with an exponentg > f (we note that this is strictly true only in the infinite time limit,
as will be discussed further below). Interestingly, the exponentα is equal tog for g 6 2
(within the numerical uncertainties), while we obtainα ∼= 2 for g > 2, where the effective
distribution has a finite second moment (atf = 1.5 andf = 2.0). An analogous behaviour
was also obtained for other values off , i.e. the relation betweenα andg in the quenched
case is the same as the relation betweenα andf in the annealed case,

α =
{
g for g 6 2

2 for g > 2.
(5)

We conclude that to understand the length–time relation in the quenched case, one has to
explain whypeff(l) differs fromp(l).

Figure 2 shows the relation between the exponentsg and f . In the most interesting
range 0< f < 2 we can distinguish between three different regimes: (i) forf . 0.7
we find g ∼= f , i.e. the same superdiffusive behaviour as in the annealed case, (ii) for
0.7. f . 1.3 we obtainf < g < 2, i.e. a superdiffusive behaviour that is slowed down in
comparison with the annealed case, and (iii) for 1.3 . f < 2 we obtaing > 2 > f , i.e. a
normal diffusive behaviour. From the inset of the figure, which showsg over an extended
range off values, we see thatg→ 1+ f whenf becomes much larger than 2.

The difference betweenpeff(l) andp(l) is at first sight surprising, since at timet = 1 the
particle initially placed atx = 0 has performed one jump only, with a jump length drawn
from the prescribed distribution, and accordingly bothpeff(l) andp(l) must be identical.
Thuspeff(l) has to change with time and we should consider a time-dependent distribution
peff(l, t). The question arises ifg (and α) in figure 1 characterize the true stationary
behaviour, i.e. ifpeff(l, t →∞) ∼ l−1−g.

To answer this question we consider the cumulative distributionπeff(l, t) =∫∞
l
peff(l

′, t)dl′, which is shown in figure 3(a) as a function ofl for f = 1.1 and five
different timest . (The following analysis may be done in full analogy withpeff(l, t), but
with πeff(l, t) it can be more simply formulated.) From the figure it can be seen that forl

smaller than a time-dependent crossover lengthlx(t) the curves exhibit a power-law decay in
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Figure 2. The exponentg characterizing the effective jump-length distributionpeff(l)

(equation (4)) as a function of the exponentf that defines the prescribed distributionp(l)
(equation (2)). The inset shows the behaviour for largef values between 1.5 and 6 and the full
line indicates the expected asymptotic behaviourg = 1+ f for f � 2 (see text).

agreement with the exponentg found in figure 1(a), πeff(l, t) ∼ l−g, while for l � lx(t) they
decay corresponding to the prescribed distribution,πeff(l, t) ∼ π(l) =

∫∞
l
p(l′) dl′ = l−f .

With increasing timelx(t) increases, and henceg indeed corresponds to the stationary case†.
Assuming thatlx(t) ∼ tγ we can make the following scaling ansatz,

πeff(l, t) = f (lt−γ )
f (t−γ )

(6)

wheref (y) ∼ y−g for y � 1 andf (y) ∼ y−f for y � 1, and the denominatorf (t−γ )
is required by the normalization conditionπeff(1, t) = 1. To determine the exponentγ ,
let us consider the time dependence ofπeff(l, t) for a fixed l0 � lx(t). Choosingl0 large
enough, we can assume that jump lengths larger thanl0 have no chance of being visited
more than once in all configurations. Then the mean numberN(l0, t) of sites with l > l0
visited by the particle up to timet must be given byN(l0, t) ' π(l0)S(t), whereS(t)
is the mean number ofdistinct visited sites up to timet . Hence, forl & l0 � lx(t)

we obtainπeff(l, t) = N(l0, t)/t ' π(l)S(t)/t ∼ l−f t1/ν−1, whereν > 1 is the exponent
characterizing the asymptotic time dependence ofS(t) ∼ t1/ν . On the other hand, we obtain
from equation (6)πeff(l, t) ∼ l−f t−γ (g−f ) for l � tγ � 1, and hence by comparison

γ = ν − 1

(g − f )ν . (7)

† We note that we also performed simulations for a periodic line, where one can reach the stationary state before
the measurements of the relevant quantities are done. As expected, when starting from the stationary state, we
found the same asymptotic scaling behaviour as in the case where initially the particle is put at the origin.
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Figure 3. (a) The cumulative effective probability distributionπeff(l, t) as a function ofl for
f = 1.1 and five different timest . For small l � lx (t), πeff(l, t) ∼ l−g with g ∼= 1.62,
while for l � lx (t), πeff(l, t) ∼ l−f . (b) Scaling plot of the data shown in (a) with
γ = (ν − 1)/[(g − f )ν] = (g − 1)/[(g − f )g] ∼= 0.74 (see equations (7), (8)).

To derive the exponentν let us ask when the typical lengthL(t) ∼ t1/α passed by
the particle during the timet should scale as the mean number of distinct visited sites
S(t). Clearly, this can be true only as far as the particle has no chance during the time
t to encounter a jump length of orderL. The typicallargest jump length encountered by
the particle within the timet is lmax(t) ∼ S(t)1/f ∼ t1/νf . Hence forlmax(t) < L(t), i.e.
f > α/ν we expectν = α, i.e. for f > 1. Forf 6 1, however, the lengthL(t) is actually
passed due to the fact that the particle encounters a jump length of orderL, i.e. it must hold
lmax(t) ∼ L(t), from which followsν = α/f . In summary we thus obtain

ν =
{
α/f = g/f for f 6 1

α f > 1.
(8)

Note that we confirmed the validity of equation (8) in the diffusive and superdiffusive
regime by numerical calculations.

To test the scaling ansatz for the data shown in figure 3(a) (f = 1.1) we hence choose
ν = α = g to evaluateγ , and plot in figure 3(b) πeff(l, t)/πeff(t

γ , t) = f (lt−γ )/f (1) as
a function of the scaling variablelt−γ . As can be seen from the figure, a very good data
collapse is obtained. We tested the scaling ansatz also for other exponentsf and always
found as good agreement as in figure 3(b).

Let us now discuss the question whyg can be different fromf . Unfortunately we are
not able to give an explicit analytical formula for the relation betweeng andf shown in
figure 2. However, insight into the mechanism leading to the different values of the two
exponents can be gained by considering an analogous lattice model, where the jump lengths
are restricted to integer numbers (i.e.p(l) ∝ l−1−f with l = 1, 2, 3, . . .). To visualize the
random flights on such a chain, it is convenient to distinguish between two types of sites
for a given jump lengthl > 2: Al sites with jump length smaller thanl andBl sites having



2608 R Kutner and P Maass

jump length larger than or equal tol. Clearly, the concentrationπ(l) = ∑∞l′=l p(l′) of Bl
sites scales asπ(l) ∼ l−f , i.e. it becomes very small for largel. Hence, for any givenf one
can find a sufficiently largel, where theBl sites can be viewed as isolated sites separating
Al-clusters of neighbouringAl sites. The mean sizeσl of theAl clusters scales as the mean
distance between twoBl sites, i.e.σl ∼ 1/π(l) ∼ lf .

Whenf is large (f � 2), almost all sites of theAl-clusters have jump length 1 and
almost all of theBl sites have jump lengthl. Hence, for a givenl we can view the random
motion of the particle as taking place withinAl-clusters of sizeσl with jump length 1,
interrupted by visits toBl sites with jump lengthl that mark the boundaries of theAl-
clusters. Following [15] we can writeπeff(l) ∼ 1/n1(σl, l) in such a simplified situation,
wheren1(σl, l) is the average number of jumps the particle needs to escape a cluster of size
σl consisting of sites with jump length 1, after it entered this cluster at a position a distance
l apart from its boundary. This numbern1(σl, l) can be calculated analytically [15] and it
scales asn1(σl, l) ∼ σll ∼ l1+f . Accordingly,πeff(l) ∼ l−1−f , i.e. g = 1+ f in agreement
with the numerical results presented in figure 2. We see that the reason for the difference
betweeng andf is the fact that the particle motion is slowed down in spatial fluctuations
with small jump lengths such that these small jump lengths are more often encountered by
the particle than expected from the prescribed distribution.

The problem becomes more complicated whenf gets smaller. Already forf . 4 the
Al-clusters can no longer be considered as consisting of sites with jump length 1 only. Then
the derivation above is no longer applicable because one needs to take into account that the
Bl sites marking the boundaries of theAl-clusters can be overjumped. Forf � 1 finally,
the mean distanceσl ∼ lf between twoBl sites becomes much smaller than the typical
jump lengthl of a Bl site and the picture of a transport behaviour governed by a random
motion among neighbouringAl-clusters loses its meaning. The particle explores new space
regions within a time period proportional tot (i.e. S(t) ∼ t) and the stochastic dynamics
becomes essentially the same as in the annealed case.

In summary we have shown that Lévy flights with quenched jump-length distributions
p(l) ∼ l−1−f exhibit a length–time scaling relation, which in general is different from the
annealed situation. The quenched case differs from the annealed case because the particle
stays on average longer in spatial regions with small jump lengths than in those with larger
ones, which causes the effective jump-length distributionpeff(l) to decay faster thanp(l),
i.e. peff(l) ∼ l−1−g with g > f . One might ask if different scaling properties of the
quenched and annealed situation might still occur for Lévy flights in higher dimensionsd,
where one would expect the fluctuation effects to become less important. In other words,
there should, for a givenf (in the interesting regimef < 2), exist a critical dimensiondc,
above which the diffusion in the presence of queched noise amplitudes is no longer slowed
down in comparison with the annealed case.
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