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Abstract. We study the one-dimensional random walk of a particle in the presence of a
short-range correlated quenched random field of jump lengthsdrawn from a levy type
distribution p(I) ~ ==/ with 0 < f < 2. We find the stochastic dynamics to be characterized

by a novel length—time scaling relation that is caused by an effective jump-length distribution
peft(l) ~ 17178 in the stationary state, which decays more rapidly tpah, i.e. g > f. For

f 2 1.3, g becomes larger than 2 and the particle diffuses normally alth@dfhhas no finite
second moment. A scaling theory is developed that describes the dynamical crossover from the
annealed to the quenched situation.

Lévy flights [1] constitute a non-Brownian random motion, which can be most easily
visualized by considering a particle that at regularly spaced time intervals performs jumps
in random directions with jump lengthsdrawn from a distribution exhibiting a slowly
decaying algebraic tailp(l) ~ I=1~/ where 0< f < 2. Since the second moment of
such a distribution is infinite, there exists no diffusive lengthscale in the process and a
time-dependent mean-square displacement is not well définBiévertheless, a length—
time scaling relation can also be introduced in thary flight problem by considering, for
example, the mean timg (L) the particle needs to first pass a given distancelf the

jump lengths are uncorrelated in time (annealed disorder) onefjabis ~ L/ [3] and this
scaling also manifests itself when considering other quantities characterizing the annealed
Lévy flight process, for example/t/ is the scaling variable entering théwy stable laws
describing the probability of finding the particle near a positioat timer [4].

Stochastic processes oély type have found many applications [1], not only in physics
(e.g. in fluid flows [5], miscelle dynamics [6], or self-organized criticality [7]) but also in
biology [8, 9] or finance [10, 11]. Further insight regarding applications to real systems have
been gained by considering (anneale@yy{ flights with a truncated jump-length distribution
[12] and Levy flights in the presence of an additional quenched random force field [13].
Recently, the first calculations going beyond one-particle properties have been performed
by studying the territory covered by many Levy flights [14].

In this paper we will investigate the question whether the fundamental length—time
scaling valid in the annealed case also holds true when the random jump lengths are not
drawn freshly at each timestep but are fixed in space (quenched disorder). As a starting
point we will consider here a one-dimensional situation, i.e. the random flight of a particle

1 This drawback can be resolved by assuming that larger jumps need longer times as it was done in the theory of
Lévy walks, see [2].

0305-4470/98/112603+07$19.5@C) 1998 IOP Publishing Ltd 2603



2604 R Kutner and P Maass

on a line with coordinater in the presence of a random field of jump lengths). The
particle jumps with equal probability to the left or right at discrete timesteps= 1 with
a jump lengthi(x,) given by its current position, at time¢. Accordingly, the random
motion of the particle can be described by

Xep1 =X+ 1(xp)n, (1)

wheren, = +1 is a random number specifying the jump direction (in the annealed case one
would havex, .1 = x; + ;n, instead, wheré, is independent of,). Because the particle

will almost never visitexactly the same point in space again, we require that the random
field /(x) is correlated over some distanedor the stochastic dynamics to be different from
the annealed case. To this end we assign a random jump Iéntiiheach space interval

na <x < m+21a, n=0+1,%2,..., wherel, can assume values between a shortest
jump lengthlmin and infinity, /min < [, < co. Each interval can be considered as a ‘site’ on

a linear chain with lattice constaat For simplicity we focus on the situation whekg, is

of the order ofa and accordingly sét,n = a = 1. The jump lengths are then drawn from

a distribution given explicitely by

p() = fI7¥/ 1< < oo. (2)

To explore the length—time scaling in the quenched case we perform computer
simulations of the stochastic dynamics given by equation (1). First we study the mean
first passage timeg, (L) averaged over both several random trajectories for a given random
field /(x) and many different realizations &fx). In each trial the first passage time was
obtained by putting the particle at the origin= 0 at timer = 0 and by measuring the
elapsed time, when it first passed one of the positions at £L. Figure 14) shows
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Figure 1. (a) Mean first passage timg (L) as a function ofL and ) effective jump-length
distribution peft (/) as a function of for f = 0.4 (x), 0.8 ), 1.0 0), 1.2 (©), 1.5 @), and

2.0 (#). The full lines mark the asymptotic slopesand —1 — g in the double-logarithmic
plots: & = 0.40 (g = 0.40), 0.85 (0.86), 1.41 (1.41), 1.84 (1.86), 2.0 (2.30), and 2.0 (2.92) for
f=04,038, 1.0, 1.2, 1.5, and 2.0, respectively. Averages were performed typically dver 10
different configurations.
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t,(L) as a function ofL for various exponenty = 0.4, 0.8, 1, 1.5 and 2 (in a double-
logarithmic representation). The straight lines in the double-logarithmic plot indicate a
power-law behaviour for largé,

t,(L) ~ L* 3

where the exponent = f for f = 0.4 is in accordance with the result valid for the
annealed case. Fof = 0.8, 1 and 1.5, howevewy is larger thanf, which means that

the superdiffusion is slowed down in comparison with the annealed case. Surprisingly, we
obtaina = 2 for f = 1.5, i.e. the patrticle diffuses normally although the prescribed jump-
length distribution has no finite second moment. As a consequence, the curgefdr5

in figure 1@) becomes, for largé., parallel to that forf = 2.0, where one would expect a
normal diffusive behaviour (except for a possible logarithmic correction term).

The origin of the differences betweenand f can be understood by considering the
effectivejump-length distributiorpes (/) the particle encounters during its jump motion. This
distribution was simply measured by counting the total number of jump lengths falling into
a small interval during a time period that the particle needed to pass the largest distance
shown in figure 14). The result is shown in figure B) for the same values of the exponent
f as in figure 14). As can be seen from the figurgew(/) scales differently ag(l),

pei(l) ~ 17178 (4)

with an exponenig > f (we note that this is strictly true only in the infinite time limit,
as will be discussed further below). Interestingly, the exporerst equal tog for g < 2
(within the numerical uncertainties), while we obtaire 2 for ¢ > 2, where the effective
distribution has a finite second moment fat= 1.5 and f = 2.0). An analogous behaviour
was also obtained for other values ff i.e. the relation betweesm and g in the quenched
case is the same as the relation betweeand f in the annealed case,

" g forg <2 5)
2 forg > 2.
We conclude that to understand the length—time relation in the quenched case, one has to
explain why peg (1) differs from p(l).

Figure 2 shows the relation between the expongnénd f. In the most interesting
range O< f < 2 we can distinguish between three different regimes: (i) fol< 0.7
we find ¢ = f, i.e. the same superdiffusive behaviour as in the annealed case, (ii) for
0.7 < f < 1.3 we obtainf < g < 2, i.e. a superdiffusive behaviour that is slowed down in
comparison with the annealed case, and (iii)) f@ £ f < 2 we obtaing > 2> f,i.e. a
normal diffusive behaviour. From the inset of the figure, which shgwser an extended
range of f values, we see that — 1+ f when f becomes much larger than 2.

The difference betweepe (1) andp(l) is at first sight surprising, since at time= 1 the
particle initially placed att = 0 has performed one jump only, with a jump length drawn
from the prescribed distribution, and accordingly beik(l) and p(I) must be identical.
Thus pesi (1) has to change with time and we should consider a time-dependent distribution
peii(l, t). The question arises i# (and «) in figure 1 characterize the true stationary
behaviour, i.e. ifpeg(l, 1 — 0o0) ~ 17178,

To answer this question we consider the cumulative distributiQa(/,t) =
/}°° pett(l’, 1) dI’, which is shown in figure &) as a function ofl for f = 1.1 and five
different timest. (The following analysis may be done in full analogy withx(/, ), but
with meg(Z, 1) it can be more simply formulated.) From the figure it can be seen thdt for
smaller than a time-dependent crossover lefgth the curves exhibit a power-law decay in
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Figure 2. The exponentg characterizing the effective jump-length distributign (/)
(equation (4)) as a function of the exponefitthat defines the prescribed distributiqr(/)
(equation (2)). The inset shows the behaviour for lafgealues between 1.5 and 6 and the full
line indicates the expected asymptotic behavigus 1+ f for f > 2 (see text).

agreement with the exponegfound in figure 14), mex (I, 1) ~ [~¢, while forl > [, (z) they

decay corresponding to the prescribed distributieg(l, ) ~ 7 (l) = f,°°p(l/) ar =1-7.

With increasing timé, () increases, and hengendeed corresponds to the stationary ¢ase
Assuming that, (1) ~ ¥ we can make the following scaling ansatz,

fur)
f@)

where f(y) ~ y~¢ for y « 1 and f(y) ~ y~/ for y > 1, and the denominatof (=)

is required by the normalization conditiong(1,7) = 1. To determine the exponemt,
let us consider the time dependencengf(/, ¢) for a fixedly > [, (r). Choosingly large
enough, we can assume that jump lengths larger thdrave no chance of being visited
more than once in all configurations. Then the mean numb@g, t) of sites withl > Iy
visited by the particle up to time must be given byN (lp, t) >~ 7 (lo)S(t), where S(z)

is the mean number ddlistinct visited sites up to timg. Hence, forl 2> I > [ (¢)
we obtainmeg(l, 1) = N(lo, 1)/t =~ 7 ()S(t)/t ~ I~Ft/»~1, wherev > 1 is the exponent
characterizing the asymptotic time dependenc&(f ~ /. On the other hand, we obtain
from equation (6)rer(l, 1) ~ 1~Ft=7@= for I > t” > 1, and hence by comparison

. v—1
g — v

(6)

Teif(l, 1) =

14 (7)

1 We note that we also performed simulations for a periodic line, where one can reach the stationary state before
the measurements of the relevant quantities are done. As expected, when starting from the stationary state, we

found the same asymptotic scaling behaviour as in the case where initially the particle is put at the origin.
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Figure 3. (a) The cumulative effective probability distributione(Z, #) as a function of for
f = 1.1 and five different times. For smalll <« [ (t), mesi(l, 1) ~ [78 with g = 1.62,
while for I > 1.(1), mest(l,t) ~ I=7. (b) Scaling plot of the data shown ira) with
y =0 -1/ - fHivl = (g = D/[(g — f)g] = 0.74 (see equations (7), (8)).

To derive the exponent let us ask when the typical length(r) ~ t/* passed by
the particle during the time should scale as the mean number of distinct visited sites
S(t). Clearly, this can be true only as far as the particle has no chance during the time
¢t to encounter a jump length of ordér. The typicallargest jump length encountered by
the particle within the time is Inax(t) ~ S()Y/ ~ t/%F. Hence forlma(t) < L(1), i.e.
f > a/v we expectv = «, i.e. for f > 1. For f < 1, however, the lengtli(r) is actually
passed due to the fact that the particle encounters a jump length oflgrder it must hold
Imax(t) ~ L(¢), from which followsv = «/f. In summary we thus obtain

{a/f=g/f for f <1
VvV =

o f>1. ®

Note that we confirmed the validity of equation (8) in the diffusive and superdiffusive
regime by numerical calculations.

To test the scaling ansatz for the data shown in figued 8f = 1.1) we hence choose
v = o = g to evaluatey, and plot in figure 3§) mew(l, 1) /me(t¥, 1) = f(t7V)/f(1) as
a function of the scaling variable~. As can be seen from the figure, a very good data
collapse is obtained. We tested the scaling ansatz also for other expghant$ always
found as good agreement as in figur®)3(

Let us now discuss the question whycan be different fromf. Unfortunately we are
not able to give an explicit analytical formula for the relation betwgesnd f shown in
figure 2. However, insight into the mechanism leading to the different values of the two
exponents can be gained by considering an analogous lattice model, where the jump lengths
are restricted to integer numbers (i) o I~/ with I = 1,2, 3,...). To visualize the
random flights on such a chain, it is convenient to distinguish between two types of sites
for a given jump lengthi > 2: A, sites with jump length smaller thdrand B; sites having
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jump length larger than or equal fo Clearly, the concentration (/) = Y2, p(') of B,
sites scales as(l) ~ [~/ i.e. it becomes very small for large Hence, for any giverf one

can find a sufficiently largé, where theB, sites can be viewed as isolated sites separating
A,-clusters of neighbouring,; sites. The mean sizg of the A, clusters scales as the mean
distance between tw8; sites, i.e.o; ~ 1/n(l) ~1/.

When f is large (f > 2), almost all sites of thet;-clusters have jump length 1 and
almost all of theB, sites have jump length Hence, for a giver we can view the random
motion of the particle as taking place withify-clusters of sizes; with jump length 1,
interrupted by visits toB; sites with jump length that mark the boundaries of thé;-
clusters. Following [15] we can writeex(l) ~ 1/n1(0;,1) in such a simplified situation,
wherenj (o7, [) is the average number of jumps the particle needs to escape a cluster of size
o; consisting of sites with jump length 1, after it entered this cluster at a position a distance
[ apart from its boundary. This numbei(o;, ) can be calculated analytically [15] and it
scales asi1 (o7, 1) ~ ol ~ ¥/, Accordingly, mer(l) ~ 1717, i.e. g = 1+ f in agreement
with the numerical results presented in figure 2. We see that the reason for the difference
betweeng and f is the fact that the particle motion is slowed down in spatial fluctuations
with small jump lengths such that these small jump lengths are more often encountered by
the particle than expected from the prescribed distribution.

The problem becomes more complicated whfegets smaller. Already foy < 4 the
A;-clusters can no longer be considered as consisting of sites with jump length 1 only. Then
the derivation above is no longer applicable because one needs to take into account that the
B, sites marking the boundaries of thge-clusters can be overjumped. Fér« 1 finally,
the mean distance; ~ I/ between twoB; sites becomes much smaller than the typical
jump lengthl of a B, site and the picture of a transport behaviour governed by a random
motion among neighbouring,;-clusters loses its meaning. The particle explores new space
regions within a time period proportional to(i.e. S(¢) ~ ¢) and the stochastic dynamics
becomes essentially the same as in the annealed case.

In summary we have shown thaéty flights with quenched jump-length distributions
p() ~ 171=f exhibit a length—time scaling relation, which in general is different from the
annealed situation. The quenched case differs from the annealed case because the particle
stays on average longer in spatial regions with small jump lengths than in those with larger
ones, which causes the effective jump-length distribupigf(/) to decay faster thap(/),

i.e. per(l) ~ I717¢ with ¢ > f. One might ask if different scaling properties of the
guenched and annealed situation might still occur fewyLflights in higher dimensiong,

where one would expect the fluctuation effects to become less important. In other words,
there should, for a giverf (in the interesting regimg < 2), exist a critical dimensiod,,

above which the diffusion in the presence of queched noise amplitudes is no longer slowed
down in comparison with the annealed case.
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